MODELS OF NEUROPEPTIDE ACTION

Edited by Fleur L. Strand, Bill Beckwith, Bibie Chronwall, and Curt A. Sandman

The New York Academy of Sciences
New York, New York
1994
Psychobiological Influences of Stress and HPA Regulation on the Human Fetus and Infant Birth Outcomes

CURT A. SANDBERGb, PATHIK D. WADHIWA,7 CHRISTINE DUNKLE-SCHETTER,8 ALEXANDRA CHIC-ZEMET,1 JUDY BELMAN,1 MANUEL PORTO,6 YUI MURATA,6 THOMAS J. GARITE,6 AND FRANCIS M. CRINELLA6

1Department of Psychiatry
2Department of Obstetrics and Gynecology
3Department of Pediatrics
University of California, Irvine
Irvine, California 92617

4Department of Psychology
University of California, Los Angeles
Los Angeles, California 90024

There are critical periods during development when profound changes in brain organization can occur.1 These critical periods relate to developmental periods when the brain is undergoing transformations such as cell migration or receptor development.2 Because many of these events transpire in utero, the fetal nervous system is especially vulnerable to a variety of influences, including subtle environmental (uterine) stress. Pregnancy provides a unique opportunity to study fetal exposure to certain neurochemical influences because of the maternal influence on the fetal environment. Evidence indicates that fetal exposure to abnormal levels of peptides can have profound influences on growth and development. For instance, postmortem implantation mass embryos exposed in vivo to vasoactive intestinal peptide (VIP) increase growth fourfold, increase somite number, increase embryonic volume, and increase DNA and protein content.1,4 Central nervous system (CNS) studies5 of embryonic and fetal mRNA indicate that the influence of VIP is entirely extrabrain (i.e. maternal).

It is established that fetal exposure to either maternal or exogenous substances produces changes in the brain and behavior that are greater and last longer than alterations in neonates or adults with similar exposure.6-8 In addition to the "visible" effects described above (i.e., growth), some maternal peptides have influences on the fetus that are subtle, but have significant consequences for development.9-11 Substantial evidence documents the influence on brain/behavior development of peptides from the hypothalamic-pituitary-adrenal (HPA) axis, including adrenocorticotropic hormone (ACTH) and \(\beta \)-endorphin (\(\beta \)E) (see Refs. 2, 12, and

13 for reviews). For instance, at maturity, rats exposed as fetuses to \(\beta \)E had "permanent" decreases (subsenstivity) in the density of cerebral, dopamine (D2) receptors (reduced plasticity), opiate receptor density, and changes in \(\beta \)E levels in discrete areas of the brain.8,10,11,14 Perinatal exposure to ACTH and its analogues permanently alters behavior and growth.9-11

These peptides of the HPA axis that influence neurodevelopment are activated by stressors such as shock, restraint, surgery, illness, and pharmacological treatment in animals8 and by physical exertion in humans.19 Psychological or subtle stress factors including sustained attention19 and anticipation of a stressful event can stimulate the HPA axis.16,22 These findings raise the possibility that stress can influence birth outcome and fetal development by stimulation of maternal neuropeptide activity.

Growing evidence supports the direct and permanent influences of maternal stress on fetal CNS development.1 Infant rats from mothers stressed by restraint during the third trimester had "permanently" decreased density of \(\beta \)E receptors in the brain.1 Insel and colleagues speculated that cells with opiate processes are especially sensitive to (i.e., eliminated by) prenatal stress. Prenatal stress increases \(\beta \)E levels in the hypothalamus of neonatal rats at 10 days of age, and the effects were proportional to the duration (days) of prenatal stress.21

Exposure of pregnant primates to a variety of social, environmental, and neurochemical stressors such as removal from cage, unpredictable noise exposure, and administration of ACTH resulted in offspring with (i) enhanced behavioral reactivity to stressors later in life,23 (ii) lower levels of motor behavior,24 (iii) compromised neurosensor responses and shorter attention span,26 and (iv) irritability temperament.27 Prenatal stress also was related to increased HPA axis reactivity and decreased immune function in offspring.28 Prenatal stress (noise) in baboons resulted in infants with lower birth weight that persisted for one month; however, other effects such as delayed neuromotor development, distractibility, and less activity were long lasting.

A small number of studies have examined the role of prenatal psychosocial stress on human fetal behavior. Early studies reported an association between maternal anxiety, hyperactive fetuses, and fetal tachycardia.29,30 Ultrasonic examination of 28 acutely panic-stricken women between 18 and 36 weeks of gestation indicated that all fetuses showed intense hyperkinesis lasting between 2 and 8 hours, with numerous, disordered, and vigorous movements.31 Pregnant women listening to favorite music resulted in significant decreases in fetal breathing and increases in fetal body movements.32 Mild psychological stress during pregnancy resulted in a sudden fall in fetal heart rate (FHR) followed by overwing recovery.33,34 Procedures that reduce maternal anxiety are associated with reduced fetal activity.35 A larger literature (see Refs. 36 through 42) has suggested that maternal stress and anxiety influence birth outcome.

The evidence supports the possibility that maternal stress, by activating peptides from the HPA axis, influences fetal behavior and birth outcome. Our program of research is designed to examine the relationships among stress, neuropeptides of the HPA axis, and measures of fetal development and infant birth outcomes.

STRESS INFLUENCES ON INFANT BIRTH WEIGHT AND GESTATIONAL AGE

A sample of 90 adult, English-speaking, predominantly white, married, upper-middle-class, employed women with a singleton intrauterine pregnancy was admin-
STRESS INFLUENCES ON HPA ACTIVATION DURING PREGNANCY

Among the many physiological changes during pregnancy, there is a gradual increase in plasma βE, ACTH, and cortisol. Although as reviewed above, stress activates the HPA axis, the effects of stress on the HPA axis during pregnancy are not well understood. To examine this question, neuroendocrine data were obtained from the maternal plasma of 54 women at 28 weeks' gestation and compared with the psychosocial data described above. The composite indices of stress were generated: “perceived stress” and “psychosocial stress.” 3 The levels of cortisol and βE during pregnancy were also collected.

The function of the relationship between maternal βE and ACTH during pregnancy is not known, but these peptides are common corelated. Scatterplot analysis confirmed the relatively high degree of correspondence between βE and ACTH, but a significant number of women failed to exhibit the usual corelated pattern. A disgregation, or pituitary tone, index was developed to describe the βE-ACTH corelated pattern by the equation below.

\[D.I = \frac{\text{absolute value} (\betaE - \text{ACTH})}{\betaE} \times 100 \]

Perceived stress was positively associated with levels of ACTH \((r = 0.44, p < 0.001)\) and negatively associated with the disgregation index \((r = -0.38, p < 0.01)\), indicating that as levels of distress (a combination of pregnancy stress, chronic stress, loss, and strain) increased, concentration of plasma ACTH levels increased. General social support was negatively associated with maternal levels of βE \((r = -0.27, p < 0.05)\), ACTH \((r = -0.48, p < 0.001)\), and cortisol \((r = -0.31, p < 0.05)\), and was positively associated with the disgregation index \((r = 0.27, p < 0.05)\). This indicates that subjects reporting greater social support during their pregnancy had lower levels of βE, ACTH, and cortisol. Pregnancy-related social support also was negatively associated with levels of ACTH \((r = -0.48, p < 0.001)\) and cortisol \((r = -0.29, p < 0.005)\) and was positively associated with the disgregation index \((r = -0.37, p < 0.01)\), indicating that availability of social support during pregnancy is related to lower levels of ACTH and cortisol.

These results provide evidence that stress during the background physiological activity of pregnancy stimulates the HPA axis. The major contribution of this study is the assessment of possible physiological mechanisms (i.e., HPA axis) by which psychosocial stress influences birth outcomes. The findings suggest the possibility that the effects of stress on birth outcome may be mediated by activation of the maternal HPA axis.

THIRD-TRIMESTER βE/ACTH DISREGULATION PREDICTS USE OF ANESTHESIA AT VAGINAL DELIVERY

Disregulation of βE/ACTH release (Di index) is associated with response to stress, as described above, and may predict adaptation during pregnancy and delivery. Significant elevation of plasma maternal βE at delivery probably reflects the stress of birth and provides alleviation of pain associated with childbirth. The significance of elevated levels of corelated pituitary peptides βE and ACTH in the third trimester of pregnancy for the experience of pain is unknown. We investigated the possibility that the peptides released during the third trimester prepared the mother for the pain and stress of delivery in a sample of 76 women, 58 of whom were delivered vaginally.

Third-trimester levels of maternal βE and ACTH were significantly \((r = 0.38, p < 0.001)\) related; however, the significant relationship between third-trimester βE and ACTH was apparent only in women \((n = 24)\) who did not receive conduction anesthesia at vaginal delivery \((r = 0.81, p < 0.001; \text{Fig. 1})\). The corelated relationship between βE and ACTH was uncoupled during the third trimester in women who received conduction anesthesia \((n = 34)\) at vaginal delivery \((r = 0.28, p = 0.05)\).

The use of conduction anesthesia during vaginal delivery was significantly related to larger absolute values (magnitude) of the Di \((F_{2,4} = 4.76, p < 0.05)\). These findings suggest that disgregation or uncoupling of the relationship between βE and ACTH during the third trimester is predictive of maternal utilization of conduction anesthesia during vaginal delivery. Changes in the release pattern of βE and ACTH during the third trimester in women receiving conduction anesthesia may alter opioid receptor sensitivity. If opioid receptors become subsensitive, then the dramatic elevation of βE at term may become less effective in response to pain, requiring the use of anesthesiain.

Third-trimester disgregation of βE/ACTH release could result from activity of PC1 and PC2 enzymes triggered by environmental factors such as stress. Use of βE and ACTH in women who use conduction anesthesia at birth may be a marker of the stress of pregnancy and may be as a result of prenatal anxiety and stress known to relate to increased pain at birth. Release of maternal peptides during labor and delivery may carry information important for fetal and infant development. Use of anesthesia during delivery can inhibit signaling of activities involved in neuropeptide release and influence neurodevelopment.
INFLUENCE OF HPA PEPTIDES ON THE HUMAN FETUS

Consensus is growing that birth outcomes may not be the most sensitive index of fetal development, especially fetal CNS function. Alternatively, precise analysis of fetal behavior provides critical information about CNS development. For instance, Nijhuis (1984) suggested that "a problem with fetal monitoring methods so far is that their objective has been detection of serious fetal illness ("fetal distress") rather than the confirmation of fetal optimality. Since normal functioning of the central nervous system (CNS) is so important to the quality of life after birth, assessment of the normality/abnormality of CNS functioning before birth would seem to be a promising means of appraising this sort of fetal evaluation." Evidence supports the view that measures reflecting fetal CNS development are more useful than "adverse" or nonlinear outcomes (e.g., prematurity) for predicting neurological and behavioral maturation. Fetal heart rate (FHR) is among the most common and sensitive measures of fetal development.

![Graph showing ACTH and Beta-Endorphin levels with and without anesthesia](image)

FIGURE 1. Panel A: Illustrates significant relationship between maternal plasma BCE and ACTH during the third trimester in all women delivering vaginally (n = 58). Panel B: Relationship between maternal plasma BCE and ACTH in women delivering vaginally who received intrauterine anesthesia (n = 34, solid squares) and those who did not (n = 24, open dots). The relationship between BCE and ACTH was significant only in women who did not receive anesthesia at vaginal delivery.

Early in gestation, the fetal heart has its own resting rate with minimal variability. As the fetus matures, variability is modified by control from the sympathetic (SNS) and parasympathetic nervous system (PNS). PNS control (vagal tone) is reflected by FHR decelerations and is related to maturation of the CNS, approaching adult levels by the third trimester. Indeed, release of PNS inhibition by cholinergic blocking agents results in a return to high resting HR. Because the fetus has limited capacity to vary stroke volume, its primary response to increased demands for O₂ is increased HR. Thus FHR carries important information about fetal health and CNS development.

SANDMAN et al.: INFLUENCES OF STRESS, HPA REGULATION

Resting (or spontaneous) evaluation of FHR is an important and common practice for determining fetal well-being. The importance of stress testing (or arousal) in the fetus to provoke HR change was illustrated by Sontag and Wallace, and has become standard practice in many clinical settings. The purpose of stresses studies is to arouse the fetus as reflected by FHR acceleration, increased FHR variability, and increased fetal movement. This valuable clinical test has been used to determine fetal viability including growth retardation, acidosis, and CNS development. Fetal arousal to external stimuli has been observed by 22 weeks and can be elicited reliably by 30 weeks in normal development, possibly reflecting myelination and neural organization in the diencephalic and mesencephalic areas of the brain.

Measures of fetal habituation to a single stimulus offer the opportunity to examine CNS activity associated with higher processes such as learning. Inhibition measures the response decrement resulting from repeated exposure to a familiar stimulus, rather than simple arousal. Properly tested, habituation is a reflection of higher central nervous system integrity. It requires that the organism detect and respond to information and then systematically "ignore" and cease responding to subsequent, identical information. The fetus compares contemporaneous information with the past by forming a representation (or a memory) of the stimulus with repeated presentations. Several studies have found that 25-week-old fetuses habituate to external stimulation. Few studies were designed to distinguish between habituation (a process of the central nervous system and receptor fatigue, a peripheral process (for exceptions see Refs. 62 and 63). Conclusions from the small number of FHR studies with habituation procedures suggest that this measure of behavior is a very sensitive index of fetal CNS maturity. We examined (i) whether the fetus displays habituation and not receptor fatigue; (ii) the effects of the HPA axis on habituation; (iii) the effects of HPA on a critical measure of fetal hypoxia, the S/D ratio from Doppler measures of uteroplacental flow.

Fetal Heart Rate Habituation as an Index of CNS Development

Transabdominal transducers for measuring FHR were attached in 25 women during weeks 30 through 32. Resting FHR was measured for 10 min, and the baseline was calculated during the last minute. A series of 15 vibroacoustic stimuli (S1) were presented on mother's abdomen over the fetal head for two seconds with pseudorandom intervals between stimuli of 20 to 45 sec. On the 16th stimulus, a novel (deshabituating) stimulus (change in dB) was presented. Trials 17 through 31 repeated the S1 series. On trials 32 through 41, the S1 was repeated, but stimulation was applied to the mother's thigh as a control. During the presentation, the mother listened to pure tone music presented through headphones that masked the auditory stimuli. Change in HR after stimulation was the primary variable of interest.

As illustrated in **FIGURE 2**, presentation of a single novel stimulus (S2, trial 16) altered the rate of FHR habituation. The rate of habituation to the first S1 is a classic habituation curve. The influence of the novel stimulus (S2) interrupts the rate of habituation for the second series of S1. The slope of the last four stimuli in the first iterative series (the four before the S2) was significantly greater (F(3, 47) = 9.21, p < 0.001) different from first four stimuli in the second iterative series of S1.

The procedures in this study ensure that habituation is the result of CNS activity and not stimulus-specific receptor fatigue. These findings validate the use of these procedures as sensitive measures of fetal behavior and CNS activity. Thus, despite the noisy uterine environment (95 dB ambient), these findings provide compelling evidence that the fetus detects and responds to a novel stimulus.
SANDMAN et al.: INFLUENCES OF STRESS, OPA REGULATION

Flow in the human fetus may be linked to peptides that are coupled with maternal stress.

It is interesting that increases in βE are associated with increased fetal sensitivity to environmental information and decreased uteroplacental flow. Subsequent analyses indicated that βE exerted independent influences on these parameters. Thus, increased βE apparently is associated with an adaptive response of the fetus (sensitivity to external information) and with decreased flow, ostensibly a maladaptive response expected to compromise CNS activity. Exactly how increases in βE influence these two fetal parameters is not clear. It is possible that the profile of maternal peptides transduces information to the fetus about the external environment. Increases in βE may be a reflection that the mother is experiencing the environment as stressful and is receiving minimal support. This signal to the fetus may result in two responses. The fetus may develop its own adaptive abilities, including increased sensitivity to the environment. This possibility is consistent with literature indicating that some developmental stress actually enhances later development. Alternatively, the message conveyed by increased maternal βE may result in compromised uteroplacental flow, resulting in hypoxia of varying degrees. This possibility is consistent with a large body of literature indicating that a high level of βE is a marker of birth complications.44,45

CONCLUSIONS

The results of the initial series of studies from our program indicate that maternal stress activation during the third trimester influences the fetus and infant.

![Graph and equation]

FIGURE 1. The relationship between the change in FHR habituation (difference between first and second series of S1) and the change in maternal βE between baseline and the third trimester.
birth outcomes. Moreover, the influence of stress on the fetus and birth outcomes are mediated by activation of the HPA axis. Our findings in human subjects are consistent with animal studies indicating that stress and HPA activation can influence behavior and brain mechanisms permanently.

This series of studies precisely defines the influence of psychosocial stress on critical birth outcome measures and suggests that increased stress and anxiety during pregnancy result in low birth weight and prematurity. They provide evidence that stress during pregnancy stimulates the HPA axis and may be a primary physiological mechanism by which stress influences birth outcomes. These findings suggest that disregulation or uncoupling of the relationship between BE and ACTH during the third trimester and changes during the third trimester from baseline are more sensitive measures of peptide effects on the fetus than absolute measures of peptide concentration. The disregulation index (DI) prospectively predicted maternal utilization of conduction anesthesia during vaginal delivery and supported the possibility that maternal opiate receptor subresponsivity observed putative analogies benefits of elevated BE at vaginal delivery. The DI and change of BE from baseline were sensitive indices of ETBR habituation (environmental responsivity) and uteroplacental flow. Relative elevation of BE was associated with increased fetal reactivity and uteroplacental flow parameters consistent with hypoxia. The overall pattern of results supports earlier speculations that BE may be an endogenous teratogen and a final common pathway for the effects on the fetus of hypoxia and other stress-related complications of pregnancy.

REFERENCES

108 ANNALS NEW YORK ACADEMY OF SCIENCES

SANDMAN et al.: INFLUENCES OF STRESS, ACTH REGULATION 209

Blockade of VIP during Neonatal Development Induces Neuronal Damage and Increases VIP and VIP Receptors in Brain

JOANNA M. HILL, RONALD F. MERVIS, JOEL POLITI, SUSAN K. MCCUNE, ILLANA GOZES, MATI FRIDKIN, AND DOUGLAS E. BRENNEISEN

Section on Molecular and Developmental Pharmacology
Laboratory of Developmental Neurobiology
National Institute of Child Health and Human Development
National Institutes of Health
Baltimore, Maryland 20892

Neuromancer Research, Inc.
Columbus, Ohio 43212

NorthEast Ohio Universities College of Medicine
Rootstown, Ohio 44272

Department of Neonatology
Children's National Medical Center
Washington, D.C. 20010

Department of Chemical Pathology
Sackler School of Medicine, Tel Aviv University
Tel Aviv, Israel

Department of Organic Chemistry
Weizmann Institute of Science
Rehovot, Israel

INTRODUCTION

Vasointestinal peptide (VIP) is a 28-amino-acid peptide that is involved in diverse regulatory functions, including vasodilation, gastric secretion, and glycogenolysis. In the central nervous system (CNS), VIP exhibits neurotransmitter and neuromodulator functions, and recent work has highlighted an important role for VIP in the regulation of CNS development. In CNS primary culture experiments, subnanomolar concentrations of VIP were shown to stimulate neuronal survival and astrocytic mitogenesis and to induce the secretion of trophic factors by astrocytes. In the micromolar concentration range, VIP treatment was shown to stimulate neuronal mitosis, neurite extension, and neuronal survival in sympathetic and neuroblastoma cultures. In addition, cultured whole embryo studies have demonstrated that a four-hour exposure to VIP resulted in a dramatic increase in growth.

Address for correspondence: Dr. Joanna M. Hill, LN/NCID, Building 49, Room 5A36, 8800 Rockville Pike, Bethesda, MD 20892.