Pro-inflammatory immune cell gene expression during the third trimester of pregnancy is associated with shorter gestational length and lower birthweight

Kharah M. Ross1 | Judith E. Carroll2 | Christine Dunkel Schetter3 | Calvin Hobel4 | Steve W. Cole5

1Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta
2Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, University of California – Los Angeles, Los Angeles, California
3Department of Psychology, University of California – Los Angeles, Los Angeles, California
4Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
5Department of Medicine and Psychiatry and Biobehavioral Sciences, University of California – Los Angeles, Los Angeles, California

Correspondence
Kharah M. Ross, Owerko Centre, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta. Email: kharah.ross@ucalgary.ca

Abstract
Problem: Altered maternal immune function predicts risk for shorter gestation and low birthweight. Few studies examine associations between prenatal immune cell gene expression and gestational length or birthweight. No studies examine which cell types drive associations. The purpose of this study is to explore associations between peripheral blood immune cell gene expression and gestational length and birthweight, using transcript origin analysis.

Method of study: Eighty-nine women were drawn from the Community Child Health Network cohort. Third trimester maternal dried blood spots were used for genome-wide transcriptional (mRNA) profiling. Gestational length and birthweight were obtained from medical charts. Covariates were age, race/ethnicity, pre-pregnancy body mass index, smoking, gestational age at blood sampling, and pregnancy infections. Associations between gene expression profiles and gestational length and birthweight were tested using general linear models. The Transcription Element Listening System (TELiS) bioinformatics analysis quantified upstream transcription factor activity. Transcript origin analysis identified leukocyte subsets mediating observed effects.

Results: Shorter gestation was predicted by increased NF-κB (TFBM ratio = −0.582 ± 0.172, P < .001) and monocyte activity (diagnosticity score = 0.172 ± 0.054, P < .001). Longer gestation was associated with increased dendritic cell activity (diagnosticity score = 0.194 ± 0.039, P < .001). Increased AP-1 activity predicted lower birthweight (TFBM ratio = −0.240 ± 0.111, P = .031). Dendritic cells and CD4+ and CD8+ T cells predicted birthweight-related gene expression differences (diagnosticity score P’s < 0.021).

Conclusion: Higher third trimester pro-inflammatory gene expression predicted shorter gestation and lower birthweight. Variations in monocyte and dendritic cell biology contributed to both effects, and T-cell biology contributed to higher birthweight. These analyses clarify the role of myeloid/lymphoid lineage immune regulation in pregnancy outcomes.

Keywords
birthweight, gene expression, gestational length, immune cells, mRNA
1 | INTRODUCTION

Inflammatory and immune processes play key regulatory roles across pregnancy, and evidence from human and animal studies suggests that dysregulation of inflammatory and immune processes during pregnancy is associated with risk for adverse pregnancy outcomes, such as shorter gestation or low birthweight.\(^2\)\(^-\)\(^4\) Infections during pregnancy and lifestyle factors associated with increased inflammation, for example obesity and smoking, have been associated with risk for preterm birth.\(^2\)\(^-\)\(^3\)\(^,\)\(^5\)\(^-\)\(^11\) And elevated levels of peripheral inflammatory markers have been observed in women who went on to have preterm labor compared with those who did not.\(^7\)\(^,\)\(^12\)\(^-\)\(^14\) There is also evidence that inflammatory pathways could play a role in risk for low birthweight. For example, preeclampsia, an inflammation-associated hypertensive disease of pregnancy, increases risk for small for gestational age infants. And some studies have reported associations between elevated pro-inflammatory markers across pregnancy and risk for lower birthweight.\(^18\)\(^-\)\(^23\)

Systemic changes in immune activity are regulated in large part by upstream changes in immune cell gene expression. To date, the majority of immune-related gene expression studies have focused on expression in the placenta, fetal membranes, or associated tissues, and have generally observed increased pro-inflammatory gene expression predicting risk for shorter gestational length and lower birthweight. A few studies have detected differences in immune cell gene expression between women who did or did not deliver preterm.\(^28\)\(^-\)\(^31\) In a sample of 1878 pregnant women, gene set enrichment analysis, which analyzes mRNA patterns based on pre-specified gene sets, that is groups of genes that share common biological function, regulation, or chromosomal locations, was used to show that compared with women who delivered term, those who delivered preterm had altered third trimester inflammatory gene sets and pathways, independent of birthweight and early pregnancy urinary tract infections. This included up-regulated leukocyte migration, NF-κB, cytokines and cytokine receptors, and toll-like and NOD-like receptor signaling, and down-regulated genes associated with T-cell activation. Another analysis of data obtained from three separate studies (combined N = 339), each of which collected maternal blood immediately before or during delivery, reported that, compared with women who delivered term, women who delivered preterm had immune cell gene expression patterns indicative of up-regulated innate immunity pathways and down-regulated adaptive immunity pathways. Collectively, these results suggest that up-regulated innate immunity and inflammatory gene expression during later pregnancy are associated with shorter gestation. However, studies that compare immune cell gene expression between women with and without preterm delivery have a number of limitations. For example, there is evidence that immune cell gene expression profiles vary as a function of gestational age, and appropriately matching women who deliver preterm with those who do not on gestational age at sampling can be a challenge, making it difficult to determine whether differences are due to preterm delivery or sample collection timing. Additionally, most studies cannot account for medical factors associated with preterm delivery that also affect immune cell gene expression, such as glucocorticoid treatment or presence of infection.\(^31\) These confounding factors are somewhat mitigated if gestational length is examined as a continuous variable, rather than comparing term and preterm pregnancies. However, no studies were identified that examined associations between immune cell gene expression patterns and gestational length. In addition, no studies have examined associations between prenatal inflammatory gene expression in blood and birthweight.

In addition, previous work on peripheral immune cell gene expression during pregnancy focused on general differences in gene expression in whole blood samples\(^28\) (For an exception, see Ref. 29). This approach, however, does not take into consideration the many kinds of immune cells that play roles in maintaining pregnancy and/or initiating processes that lead to labor and delivery. Natural killer cells, monocytes, macrophages, and dendritic cells, various classes of T cells, and neutrophils have all been identified as playing important roles during pregnancy.\(^34\)\(^-\)\(^40\) Without understanding which immune cells in the maternal circulating blood cell pool contribute to the aggregate transcriptomic association with gestational length or low birthweight, it is difficult to determine which mechanistic pathways are involved or identify targets for clinical intervention. One way to approach this question is to apply a specialized bioinformatic method called transcript origin analysis, which was developed to identify the specific cell subsets that contribute to differential gene expression profiles measured within an aggregate cell population.\(^41\)

As such, the purpose of this study was to explore links between pro-inflammatory gene expression and cellular activation profiles in maternal blood samples collected during the third trimester of pregnancy and gestation length and birthweight. A diverse, low-income sample of women was recruited as part of the Community Child Health Network (CCHN), a prospective study of chronic stress and postpartum outcomes. These analyses focus on the subset of women who became pregnant again over the follow-up, and for which banked third trimester dried blood spot (DBS) samples were available for immune cell gene expression assay. We hypothesized that up-regulated pro-inflammatory gene expression would be associated with shorter gestational length (independent of birthweight) and lower birthweight (independent of gestational length), as tested using bioinformatic measures of transcription factor activity derived from genome-wide transcriptional profiling data.\(^42\)

2 | METHODS

2.1 | Participants

Data were drawn from the Community Child Health Network (CCHN), funded by the Eunice Kennedy Shriver National Institutes of Child Health and Human Development (NICHD) and National Institutes of Health (NIH). The larger CCHN cohort consists of 2510 low-income Black, White, and Latina women recruited from five sites across the USA (Washington, DC; Baltimore, MD; Los Angeles, CA; Lake County, IL; eastern North Carolina). Women were
recruited following the birth of a child, as per eligibility criteria and recruitment procedures reported elsewhere (Figure 1). First assessments occurred at 1 month postpartum and continued every 6 months up to 2 years after the birth of the index child (n = 2089). At some point over the follow-up, 416 participants (20%) indicated that they had become pregnant again. Of those, 343 (82%) consented to participate in the subsequent pregnancy follow-up study, and 250 (73%) completed an assessment during the third trimester of pregnancy. Of the 250 participants, 234 (94%) consented to providing a dried blood spot (DBS) sample, which were used in the original study to assay blood metabolic indicators (data not presented). A total of 89 women (38%) had banked DBS available for additional assays, and had information available on birth outcomes, that is gestational length or birthweight. As such, our final sample consisted of 89 women who became pregnant over the follow-up and had both banked DBS and birth outcome data. Participants provided informed, signed consent to participate, and all protocols followed Declaration of Helsinki procedures. Study procedures and protocols were reviewed and approved by the Institutional Review Boards of all community and academic institutions associated with CCHN.

2.2 | Procedure

Women completed structured interviews in their homes before the subsequent pregnancy (preconception) which was at 1, 6, and 12 months after the birth of a child, and during the second and third trimester of the subsequent pregnancy. Interviews were conducted in English or Spanish, with attempts to match interviewer and participant ethnicity. Dried blood spots (DBS) were collected during the third trimester of pregnancy, and assayed for inflammatory gene expression (mRNA). Both gestation length (weeks) and birthweight (g) were obtained from medical chart review following delivery.

2.3 | Inflammatory gene expression

A non-fasting blood sample was collected onto a DBS card and assayed for genome-wide transcriptional profiles using RNAseq. Briefly, a finger was lanced and capillary blood collected on filter paper. DBS cards were allowed to dry for 30 minutes, and then stored at ~30°C until a subset of each sample was assayed for metabolic markers (data not reported here). Remaining DBS were stored at ~80°C and shipped to the UCLA Social Genomics Core Laboratory for RNA extraction as previously described. RNA samples were converted to cDNA libraries using the QuantSeq 3′ mRNA-Seq Library Prep Kit FWD for Illumina (Lexogen Inc) and sequenced using an Illumina HiSeq4000 instrument (Illumina Inc) in the UCLA Neuroscience Genomics Core Laboratory, following the manufacturers’ standard protocol. All samples passed endpoint quality assurance thresholds for DBS RNAseq samples, including >10 million single-strand 65-nucleotide reads per sample, >90% of reads aligning to the reference human genome, and a correlogram average profile $r \geq .80$. Gene expression values were normalized to transcript counts per million total transcripts and log$_2$-transformed for analysis by linear statistical models as outlined below.

2.4 | Covariates

Covariates considered for inclusion in analyses were maternal demographics (age [years] in the third trimester of pregnancy, and maternal race/ethnicity [Black vs all, Latina vs all]), alcohol consumption, smoking, infection reported or treated over the pregnancy (yes/no), gestational age at the third trimester assessment, and pre-pregnancy body mass index (BMI). Pre-pregnancy BMI was included as a covariate because adipose tissue produces inflammatory markers, and pre-pregnancy BMI is associated with inflammatory activity during pregnancy. Maternal obesity is also associated with risk for shorter gestational length and low birthweight. Height and weight measurements were taken at 1, 6, and 12 months postpartum and were used to calculate BMI (kg/m2), by dividing weight by height-squared. Pre-pregnancy BMI was defined as the BMI value obtained at the last preconception assessment.

Infections are characterized by an immune response and thus altered immune cell gene expression patterns, and infections during pregnancy are associated with risk for pregnancy complications,
such as shorter gestation. Infections reported and treated over the subsequent pregnancy were obtained from medical risks and conditions reported in response to structured questions administered during the second and third trimester interviews. They included whether a care provider had informed the participant they had, for example, a bladder infection, or were “given any medications to treat infections, such as vaginal, bladder, or kidney infections, during this pregnancy?” If women responded “yes” to any of these questions they were coded as having an infection in pregnancy.

Alcohol consumption and smoking are health behaviors associated with altered immune and inflammatory activity, and risk for pregnancy complications. Few women reported any alcohol consumption (N = 1, 1%) or any cigarette use (N = 5, 4%) at any point over the subsequent pregnancy. As such, these variables were not included in the analyses, although women who reported alcohol consumption and cigarette use were retained in analyses.

Evidence suggests that immune and inflammatory activity changes systematically over the course of pregnancy, and so immune cell gene expression profiles could also be affected by gestational age at blood sampling. Gestational age at blood sampling was calculated based on reported estimated date of conception (based on last menstrual period).

Consequently, final covariates were maternal age, race/ethnicity, pre-pregnancy BMI, infection reported over pregnancy, and gestational age at the time of blood sampling, and gestational length (in models predicting birthweight) or birthweight (in models predicting gestational length).

2.5 Statistical analyses

Gene expression data were analyzed using standard methods for targeted hypothesis testing in genome-wide transcriptional profiles. Gene expression data were normalized “gene transcripts per million total transcripts” (TPM), floored at 1 TPM, log2-transformed, and screened to exclude transcripts that varied by <0.5 log2 units across participants (to remove genes that were generally undetectable or showed no appreciable variation in expression levels across samples). Remaining data were analyzed using a standard general linear statistical model treating log2 TPM values as the dependent measure, gestational age and birthweight as the key independent measures, and age (in years), BMI (kg/m2), and race/ethnicity as covariates. Where indicated, ancillary analyses additionally controlled for variations in leukocyte subset prevalence by including as covariates the abundance of mRNAs encoding CD3, CD4, CD8, CD19, CD14, CD16, and CD56. Models were estimated using the Java JAMA matrix algebra package (1.0.3) to implement standard open source numerical algorithms for ordinary least squares parameter estimation. The goal of these analyses was to provide maximum-likelihood point estimates of differential gene expression to serve as input into higher-order bioinformatics analyses that test for transcriptome-wide alterations in the activity of a priori-specified transcription factors and inflammation-related cell types (described below). As such, no statistical significance testing was conducted at the level of individual genes (only at the level of the downstream bioinformatic inferences derived from gene sets defined by point estimates of differential expression magnitude). Point estimates of differential expression were used because they have been found to provide more replicable gene lists than those derived from gene-specific statistical testing.

Primary analyses used empirical gestational length- or birthweight-associated differences in genome-wide transcriptional profiles to test for differential activity of pro-inflammatory transcription factors, NF-kB and AP-1, as well as the generally anti-inflammatory glucocorticoid receptor (GR). These analyses took as input all genes that showed ≥2.0-fold difference in average expression across the range from 2 SD below the average gestational length (or birthweight) to 2 SD above the average (ie, over the 4-SD range of normal variation). Gene lists were analyzed using a 2-sample variant of the Transcription Element Listening System (TELiS) quantifying the prevalence of NF-kB and AP-1 transcription factor-binding motifs (TFBMs) within the promoters of differentially expressed genes using TFBMs derived from the TRANSFAC database (V$NKAPPAB_01 and V$AP1_Q6, respectively). Results were averaged across 9 alternative technical specifications involving variations of promoter length (~300, ~600, and ~1000 to ~200 bp) and TFBM detection stringency (MatSim 0.80, 0.90, 0.95). In all analyses, statistical testing was based on standard errors derived from bootstrap resampling of linear model residual vectors (to account for correlation among genes). Two-tailed P values <.05 were considered statistically significant.

Secondary analyses used transcript origin analysis to identify the specific leukocyte subsets giving rise to the observed differences in gene expression associated with gestational length- or birthweight. Using reference data from transcriptome profiling of isolated leukocyte subsets (GEO GSE1133), these analyses map the same set of gestational age- and birthweight-associated genes used above to cell type-specific diagnosticity scores that indicate the extent to which those genes are distinctively expressed by CD4+ T cells, CD8+ T cells, B cells, NK cells, monocytes, or BDCA2+ plasmacytoid dendritic cells. Scores are defined as in Cole, Hawkley, Arevalo, Cacioppo, computed using the JAMA matrix algebra package, and tested for statistically significant over-representation for each cell type based on standard errors derived from bootstrap resampling of linear model residual vectors (to account for correlation among genes). Two-tailed P values <.05 were considered statistically significant.

3 RESULTS

3.1 Sample characteristics

Sample characteristics are presented in Table 1. The sample was approximately half Latina, a quarter White, and a quarter Black, and participants were on average 27.9 ± 5.22 years old during the third trimester of pregnancy. Average gestational length was 39.2 ± 3.69 weeks, ranging from 36.3 to 42 weeks gestational age.
Four infants (4%) were born preterm, defined as before 37 weeks gestational age. Average gestational weight was 3413 ± 447 g, ranging from 2105 to 4750 g. Only one infant (1%) fell below the lower end of the normal range for birthweight (2500 g). Gestational age at birth and birthweight was significantly correlated, $r = .303$, $P = .008$, such that infants who were born later also tended to be heavier.

3.2 Gestational length

Genome-wide analyses of maternal blood samples collected during the third trimester identified 1532 gene transcripts that showed >2.0-fold difference in average expression level over the range of normal variation in gestational length (ie, over the range from 2 SD below the average to 2 SD above average), after controlling for age, race/ethnicity, pre-pregnancy BMI, recent infection status, gestational age at birth, and gestational length (612 transcripts up-regulated and 648 down-regulated). Promoter-based bioinformatic linked greater birthweight to lower activity of AP-1 (ie, associating relative low birthweight with relatively greater AP-1 activity: -0.240 ± 0.111, $P = .031$), but no difference in NF-xB activity (-0.234 ± 0.207, $P = .260$; see Figure 3A).

In analyses of cellular origins of differentially expressed transcripts, genes empirically associated with lower birthweight derived predominately from dendritic cells (+0.0157 \pm 0.036, $P < .001$) whereas genes empirically associated with higher birthweight derived predominately from CD4+ T cells (+0.081 \pm 0.026, $P = .002$), CD8+ T cells (+0.091 \pm 0.026, $P < .001$) and dendritic cells (+0.077 \pm 0.037, $P = .021$; see Figure 3B). Again, we found no difference in expression of canonical dendritic cell activation markers (CD83, CD40, CD80, CD86, CXCL8, OX40/TNFRSF4) in association with birthweight ($P = .68$ for the 6-gene composite score).

4 DISCUSSION

The purpose of this study was to extend previous work on associations between maternal immune cell gene expression and birth outcomes by identifying specific pro-inflammatory transcription factors and leukocyte subsets associated with variations in gestational length and birthweight. Using a sample of low-income, diverse women, we replicated previous findings reporting an association between increased pro-inflammatory gene expression during the third trimester of pregnancy and shorter gestational length, and also report here a similar association between increased pro-inflammatory immune cell gene expression and lower birthweight, independent of gestational length. However, the specific pro-inflammatory transcription factors implicated in driving the observed transcriptome variations differed by outcome, with elevated NF-xB activity associated with shorter gestational length, and elevated AP-1 activity associated with lower birthweight. Analyses of the specific leukocyte subsets involved implicated dendritic cells in structuring the aggregate blood transcriptome profiles associated with both longer gestational length, independent of birthweight, and greater birthweight, independent of gestational length. CD4+ and CD8+ T-cell subsets were also implicated in greater birthweight, but not longer gestational length. Less favorable birth outcomes were associated with increased expression of monocyte-related genes (gestational length, consistent with other studies) and dendritic cell-related genes (birthweight). This is the first study to examine associations between immune cell gene expression profiles and gestational

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean ± SD or % (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y)</td>
<td>27.9 ± 5.22</td>
</tr>
<tr>
<td>Race/ethnicity</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>27 (24)</td>
</tr>
<tr>
<td>Latina</td>
<td>46 (41)</td>
</tr>
<tr>
<td>White</td>
<td>27 (24)</td>
</tr>
<tr>
<td>Pre-pregnancy BMI (kg/m²)</td>
<td>29.5 ± 6.07</td>
</tr>
<tr>
<td>Infection over pregnancy (yes)</td>
<td>30 (28)</td>
</tr>
<tr>
<td>Third trimester gestational age (wk)</td>
<td>32.9 ± 3.69</td>
</tr>
<tr>
<td>Gestational length (wk)</td>
<td>39.2 ± 1.05</td>
</tr>
<tr>
<td>Birthweight (g)</td>
<td>3413 ± 447</td>
</tr>
</tbody>
</table>

5 of 10 ROSS ET AL.

American Journal of Reproductive Immunology WILEY
length and birthweight in a sample of women who primarily delivered infants of average size at term. Overall, these results are consistent with previous research linking inflammatory processes to premature delivery, and suggest that these processes also play an important role in the gestational length of healthy, term pregnancies. These results also extend previous findings by identifying specific transcription control pathways and cell types that can be targeted for future mechanistic research. This study also expands the precision of examination of pregnancy outcomes by analyzing the molecular correlates of low birthweight (independent of gestational length), and gestational length (independent of birthweight).

Our findings are consistent with previous research reporting associations between third trimester pro-inflammatory immune cell gene expression and risk for shorter gestational length. Heng et al. observed that, during the third trimester of pregnancy, women who went on to have spontaneous preterm birth had up-regulated enriched gene sets that included cytokine signaling, infection and wound healing, leukocyte migration, and NF-kB-regulated pathways. We also observed an association between shorter gestational length and up-regulated pro-inflammatory gene expression via increased activity of the transcription factor NF-kB. Moreover, transcript origin analyses indicated that genes associated with shorter gestational length were primarily derived from monocytes, highlighting the importance of the innate immune system in regulating immune processes related to gestational length. These findings and those reported by Heng et al. are consistent with the body of work reporting associations with increased peripheral pro-inflammatory immune proteins and shorter gestational length. Collectively, this suggests that NF-kB and pro-inflammatory gene activation in peripheral blood cells could be implicated in pathways leading to shorter gestational length.

Additional transcript origin analyses indicated that immune cell gene expression associated with longer gestational length was primarily attributable to dendritic cells. This is consistent with

FIGURE 2 A, Promoter-based bioinformatics analyses of transcription factor-binding motifs in promoters of up- vs down-regulated genes associated with gestational length. B, Results of transcript origin analysis to identify leukocyte subsets that could account for overall transcriptome differences associated with gestational length.

FIGURE 3 A, Promoter-based bioinformatics analyses of transcription factor-binding motifs in promoters of up- vs down-regulated genes associated with birthweight. B, Results of transcript origin analysis to identify leukocyte subsets that could account for overall transcriptome differences associated with birthweight.
research underlying the importance of dendritic cells in maintaining pregnancy. There are shifts in dendritic cell populations and pattern of activation that promote fetal tolerance and maintenance of a Th2 shift during pregnancy. This is in part achieved through unique changes in dendritic cell activity toward the end of pregnancy, characterized by increases in dendritic cell activation and cytokine expression sets implicated in viral responses and T-cell activity were observed in blood samples collected just before or during delivery. Our transcription origin analyses did not detect differences in gene expression by gestational length. Indeed, gene expression patterns that indicate down-regulation of adaptive immunity in women who deliver preterm was also observed in blood samples collected just before or during delivery.

These analyses are also novel in that associations between third trimester immune cell gene expression and birthweight were also considered. Independent of gestational length, lower birthweight was associated with up-regulation of genes regulated by the pro-inflammatory AP-1 transcription factor, but we observed no association for genes regulated by NF-kB. It is possible that this finding reflects a distinct contribution from cytokines or cellular activation processes that are independent of the NF-kB pathway. Future research will be required to determine the biological processes leading to AP-1 activation, and to assess its significance in regulating the specific biological processes underlying birthweight and related pregnancy processes.
to note that this study was neither designed nor powered to identify specific individual gene transcripts that are associated with gestational length or birthweight; it was designed only to test specific a priori-defined hypotheses involving inflammation-related transcription factors and cells using an aggregate transcriptome-wide bioinformatics analysis that takes point estimates of differential gene expression as input (ie, there is no attempt to conduct statistical testing at the level of individual gene transcripts; statistical testing is conducted only at the level of transcription factor and/or cell identity composite scores derived up- and down-regulated gene sets). It is likely that additional transcriptional correlates of gestational length and birthweight exist that were not revealed by the present pre-specified hypothesis-testing analysis. Any such effects remain to be identified in future research using larger sample sizes and exploratory- or discovery-based statistical analyses.

In conclusion, increased pro-inflammatory gene expression in third trimester maternal blood samples was associated with both shorter gestational length and lower birthweight, via activity of the NF-kB and AP-1 transcription factors, respectively. Differences in immune cell gene expression by gestational length were attributed to monocytes and dendritic cells, and by birthweight to dendritic cells and T cells. These analyses contribute to our understanding of the pathways by which peripheral immune cell activity could increase risk for adverse pregnancy outcomes, that is shorter gestational length and low birthweight, and highlight the importance of examining cross-cell regulation and activity in future research.

ACKNOWLEDGMENTS

This study was conducted by Community Child Health Network (CCHN) through cooperative agreements with the Eunice Kennedy Shriver National Institute of Child Health and Human Development (U HD44207, U HD44219, U HD44226, U HD44245, U HD44253, U HD54791, U HD54019, U HD44226-05S1, U HD44245-04S1, R03 HD59584) and the National Institute for Nursing Research (U NR008929). This project received support from the Cousins Center for Psychoneuroimmunology, UCLA Semel Institute. Dried blood spot RNAseq assays were supported by the USC-UCLA Biodemography Center (NIH P30 AG017265). K. Ross and C. Dunkel Schetter were supported through the National Institute for Health (R01 HD073491) and Eunice Kennedy Shriver National Institute of Child Health and Human Development (R01HD072021-01A1). J. Carroll was supported by the National Institute on Aging (K01 AG044462 NIA) and NICHD (R01 HD 072021).

ORCID

Kharah M. Ross https://orcid.org/0000-0002-1472-5630

REFERENCES

