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Abstract
Problem: Epigenetic age indices are markers of biological aging determined from 
DNA methylation patterns. Accelerated epigenetic age predicts morbidity and mor-
tality. Women tend to demonstrate slower blood epigenetic aging compared to men, 
possibly due to female-specific hormones and reproductive milestones. Pregnancy 
and the post-partum period are critical reproductive periods that have not been stud-
ied yet with respect to epigenetic aging. The purpose of this paper was to examine 
whether pregnancy itself and an important pregnancy-related variable, changes in 
body mass index (BMI) between pregnancy and the post-partum period, are associ-
ated with epigenetic aging.
Method of Study: A pilot sample of 35 women was recruited as part of the Healthy 
Babies Before Birth (HB3) project. Whole blood samples were collected at mid-preg-
nancy and 1 year post-partum. DNA methylation at both time points was assayed 
using Infinium 450K and EPIC chips. Epigenetic age indices were calculated using an 
online calculator.
Results: Paired-sample t-tests were used to test differences in epigenetic age indices 
from pregnancy to 1 year after birth. Over this critical time span, women became 
younger with respect to phenotypic epigenetic age, GrimAge, DNAm PAI-1, and epige-
netic age indices linked to aging-related shifts in immune cell populations, known as 
extrinsic epigenetic age. Post-partum BMI retention, but not prenatal BMI increases, 
predicted accelerated epigenetic aging.
Conclusion: Women appear to become younger from pregnancy to the post-partum 
period based on specific epigenetic age indices. Further, BMI at 1 year after birth that 
reflects weight retention predicted greater epigenetic aging during this period.
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1  | INTRODUC TION

Immune cell-derived epigenetic age indices are indicators of biologi-
cal aging1,2 that are highly correlated with chronological age but cap-
ture different processes. Epigenetic age robustly predicts morbidity, 
such as risk of breast and lung cancer,3,4 and earlier mortality.5-7 Sex 
differences in epigenetic age are also observed, with women showing 
slower rates of epigenetic aging compared with men.8-11 Reproductive 
biology and key reproductive periods, and their hormonal drivers 
have been proposed as one possible mechanism accounting for these 
sex differences. For example, earlier onset of menopause, whether 
naturally occurring or surgically induced, is associated with acceler-
ations in epigenetic aging in women.12 Also, faster onset and pro-
gression of puberty in girls have been associated with epigenetic age 
accelerations in one study,13 though not in another.14

Pregnancy is a normative reproductive experience with 86% of 
US women giving birth.15 The role of pregnancy in biological aging 
in general, and epigenetic aging in particular, is not well studied. 
Telomere length, another marker of biological aging, was examined 
in one study of 81 women followed from mid-pregnancy to 9 weeks 
post-partum, with results indicating no significant change in telo-
mere length over this time frame.16 However, the effect of preg-
nancy on epigenetic age remains relatively unexplored.

Several epigenetic age indices exist that capture different as-
pects of biological aging. Here, we examined three classes of epi-
genetic age indices: those based on chronological age, specific to 
immune cells, and based on clinical or phenotypic indicators of mor-
tality risk. Horvath's DNA methylation age is based on chronological 
age and is calculated from DNA methylation sites strongly associ-
ated with chronological age across tissue types.2 The association 
between DNA methylation age and chronological age is imperfect, 
suggesting a decoupling between chronological age and DNA meth-
ylation-derived age. The age acceleration residual captures the dif-
ference between chronological age and biological age estimated by 
Horvath's DNA methylation age.

Immune-specific biological age is determined by both intrinsic, 
i.e.,  within-cell biological age, and age-driven changes in immune 
cell proportions. As such, immune cell-specific epigenetic indices 
also consider cell proportions. Immune cell proportions change as 
a function of age, with increases in exhausted or senescent CD8+ T 
cells and decreases in naïve CD8+ T cells over time.8,17 Proportions 
of immune cells in blood can be estimated from whole blood DNA 
methylation profiles.18 Intrinsic epigenetic age acceleration (IEAA) 
captures intrinsic biological age of immune cells, independent of 
age-related changes in immune cell proportions.19 In contrast, ex-
trinsic epigenetic age acceleration (EEAA) captures biological age 
due to both intrinsic immune cell age and age-driven changes in im-
mune cell populations.19

Finally, clinical or phenotypic-derived epigenetic age indices are 
calculated using DNA methylation sites that are highly correlated 
with clinical risk factors or outcomes. Phenotypic epigenetic age ac-
celeration (PEAA) was developed as an epigenetic biomarker of “phe-
notypic age,” defined by nine biological markers (albumin, creatinine, 

glucose, C-reactive protein, lymphocyte percent, mean cell volume, 
red cell distribution, alkaline phosphatase, and white blood cell count) 
and chronological age.20 GrimAge was constructed as a composite 
marker calculated from epigenetic surrogate markers for 12 plasma 
proteins (adrenomedullin, β-2-microglobulin, CD56, ceruloplasmin, 
cystatin C, EGF fibulin-like ECM protein 1, growth differentiation 
factor 15, leptin, myoglobin, plasminogen activator inhibitor 1, serum 
paraoxonase/arylesterase 1, and tissue inhibitor metalloproteinases 
1) and smoking pack-years, based on self-reported smoking data,21 
and is strongly predictive of death. DNAm plasminogen activator 
inhibitor-1 (PAI-1) is the epigenetic surrogate marker for  PAI-1,21 a 
glycoprotein involved in suppressing fibrinolysis or the breakdown of 
blood clots, and which is a risk marker for cardiovascular disease.22 In 
sum, each epigenetic age index captures different facets of biological 
aging, as indexed by differences in DNA methylation patterns.

Weight change between pregnancy and the post-partum period 
could also be factors that affect epigenetic age during the child-bear-
ing years. In healthy adults, obesity and weight gain have been as-
sociated with accelerations in epigenetic age.23 Weight gain during 
pregnancy, however, is considered normative.24 It might be hypothe-
sized that insufficient or excess weight gain in pregnancy and/or re-
tention of post-partum weight for longer than clinically recommended 
are associated with more rapid epigenetic aging. However, it is not 
clear whether variation in weight change over pregnancy and varia-
tion in weight loss during the post-partum period are associated with 
changes in epigenetic age in a manner similar to non-pregnancy pop-
ulations. The purpose of the present study was to examine changes 
in epigenetic age variables between the second trimester and 1 year 
post-birth, and test associations between epigenetic age indices and 
weight change during pregnancy and the post-partum period.

2  | METHODS

2.1 | Participants

A sample of 35 women was studied who were recruited into the 
Healthy Babies Before Birth (HB3) project, which is a longitudi-
nal study designed to test the impact of antenatal maternal mood 
on pregnancy and post-partum outcome. Inclusion criteria were 
18 years of age or older and singleton pregnancies up to 12 weeks 
gestation at time of recruitment. Exclusion criteria were current sub-
stance abuse, HIV-positive status, current smoking, or medications 
that could affect inflammatory processes, for example, glucocor-
ticoids at the time of recruitment. The current sample focused on 
women recruited at only one of the two study sites (Los Angeles, 
CA), who had whole blood samples collected at study entry in early 
pregnancy and again at 1 year after birth. Sample characteristics are 
presented in Table 1. The majority of participants were White (43%), 
married (91%), and primiparous (57%). Few adverse pregnancy out-
comes were reported for the current sample, with only two par-
ticipants (6%) giving birth preterm (<37 weeks gestation), and one 
(3%) giving birth to a low birthweight baby (< 2500 g). Less than half 
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(43%) reported at least one obstetric risk, that is, serious infection, 
hypertension, diabetes, or anemia, either during this or a previous 
pregnancy. Study data were collected and managed using REDCap 
electronic data capture tool.25

2.2 | Protocol

Women completed a maximum of six assessments, three over 
pregnancy (8-16  weeks gestation, 20-26  weeks gestation, and 
30-36  weeks gestation) and three over the post-partum period 
(6 weeks, 6 months, and 1 year post-birth). Women were included in 
the current analyses if they had information available on all variables. 
Demographics and previous pregnancy information were obtained at 
study entry. Height and weight were taken at each assessment. Whole 
blood samples were collected at the first or second pregnancy visit 
(16.3 ± 2.78 weeks gestation; 8 -26 weeks gestation) and at the 1-year 
post-birth final study visit (11.5 ± 0.505 months). On average, there 
were 16.9 ± 0.938 months between the two assessments.

2.3 | DNA methylation

DNA was extracted from whole blood and assayed for DNA methyla-
tion by the UCLA Neurosciences Genomics Core. The first wave of 
participants (n = 19) was batched together using the Illumina Infinium 

HumanMethylation450 BeadChip (Illumina, Inc; 485,577 CpG sites). 
The second wave of participants (n = 16) was run a year later using a 
different chip, the Infinium MethylationEPIC BeadChip Kit (Illumina, 
Inc; 868,464 CpG sites). A change in chip used was necessary because 
Illumina had discontinued the previous chip between the two runs. 
Approximately 90% of the CpG sites on the 450K chip are also included 
on the 850K chip. Both pregnancy and post-partum samples from a 
given participant were run on the same chip and in the same batch.

DNA methylation data were pre-processed as per standard 
protocols.2,26 Raw data were normalized using Noob in the minify 
package in R.27 CpG cites that were missing on the 450K or EPIC 
chips were added, and processed data were uploaded into the epi-
genetic clock online calculator (https://dnama​ge.genet​ics.ucla.edu/). 
The online calculator also produces quality control checks. All sam-
ples were correctly identified as being female in origin, with tissue 
sources of either whole blood or blood PBMCs, and had sample and 
gold standard correlations >.80 (mean r = .96).

2.4 | Epigenetic age variables

2.4.1 | DNA methylation age and age 
acceleration residual

The epigenetic age of each blood sample was estimated using 
several well-defined algorithms available through an online DNA 

Variable Mean ± SD or % (N) Range

Age (years) 33.6 ± 5.29 23.0-45.0

Marital status (married) 91% (32)  

Per Capita Household income ($1000) 46.2 ± 29.8 4.06-125

Education (y) 16.9 ± 2.90 12.0-26.0

Race/ethnicity

White 43% (15)  

Black 14% (5)  

Latina 26% (9)  

Asian 11% (4)  

Multi-Race 6% (2)  

BMI (kg/m2)

Pre-pregnancy BMI 25.0 ± 5.82 16.8-36.4

Late pregnancy change in BMI (T3-T1) 3.02 ± 1.15 0.930-5.15

Post-partum change in BMI (P3-P1) -1.26 ± 2.50 -10.3-2.51

Total change in BMI (P3-Pre-pregnancy) 0.433 ± 2.64 -10.7-5.15

Parity (Primiparous) 57% (20)  

Baby sex (female) 34% (12)  

Breastfeeding at 12 mo post-partum 49% (17)  

GA at first assessment (weeks) 16.3 ± 2.78 13.3 - 24.4

Months post-partum at P3 (months) 11.5 ± 0.505 11.0-12.0

Time between assessments (mo) 16.9 ± 0.938 15.0-19.0

Assay run (April – 450K) 54% (19)  

TA B L E  1  Sample characteristics 
(n = 35)

https://dnamage.genetics.ucla.edu/
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methylation calculator.2 DNA methylation age (DNAm age; years), 
or biological age, was calculated using the Horvath method,2 which 
uses the weighted average of regression coefficients obtained 
from 353 CpG “epigenetic clock” sites. The age acceleration resid-
ual represents the difference between chronological and biological 
age, which is calculated by taking the residual from the linear re-
gression model of biological age regressed onto chronological age. 
Again, positive values indicate accelerated biological aging.

2.4.2 | Estimates of immune cell proportions

Additional age-adjusted estimates of proportions of immune cells in 
circulation and biological age estimates specific to blood were ob-
tained using the advanced analysis option in the online epigenetic 
clock calculator.2 Proportions of plasmablast cells, exhausted or se-
nescent CD8+ T cells (CD8+ CD28-CD45FA- T cells), naïve CD8+ T 
cells, and naïve CD4+ T cells were calculated using Houseman's es-
timation technique, which is based on DNA methylation signatures 
derived from purified samples of leukocytes,18 and then adjusted for 
chronological age.

2.4.3 | Intrinsic and extrinsic epigenetic age 
acceleration

IEAA is estimated using the 353 CpG sites from the Horvath 
method2 to calculate the residual of biological age regressed onto 
chronological age, adjusting for imputed measures of blood cell 
counts known to change with age, specifically CD8+ naïve T cells, 
senescent CD8+ T cells, and plasmablasts.19 EEAA is estimated 
using the 71 CpG sites used by the Hannum method of calculating 
DNAm Age9 and is then enhanced using static weighted averages 
of blood cell counts that vary with age, that is, CD8+ naïve T cells, 
senescent CD8+ T cells, and plasmablasts.28 The weights are cal-
culated from the correlation between chronological age and each 
individual variable.28

2.4.4 | Phenotypic epigenetic age acceleration

Phenotypic epigenetic age acceleration was calculated by Morgan 
Levine using R syntax as described elsewhere.20 PEAA is calculated 
from 513 CpG sites that were selected based on ability to predict 
both chronological age and phenotypic indicators of aging. PEAA is 
associated with all-cause mortality, cancers, physical function, and 
Alzheimer's disease.20

2.4.5 | GrimAge and DNAm PAI-1

GrimAge and DNAm PAI-1 are epigenetic age markers enriched 
for DNA methylation sites that are surrogate biomarkers for blood 

plasma proteins related to morbidity and mortality and cigarette 
smoking (packs per year).21 DNAm PAI-1 is one of seven surrogate 
DNA methylation  indices validated by identifying the CpG sites 
most associated with blood plasma protein concentrations. DNAm 
PAI-1 emerged as the blood plasma protein surrogate index most 
associated with risk for cardiovascular disease and physical func-
tioning. GrimAge is a composite biomarker calculated from the 
DNAm-based surrogate epigenetic indices determined for seven 
blood plasma proteins and the epigenetic index capturing smoking 
pack-years. Both GrimAge and DNAm PAI-1 are powerful predic-
tors of morbidity and mortality.21

2.4.6 | Assay reliability

A total of 16 mid-pregnancy samples were assayed on both the 450K 
and 850K DNA methylation chips, allowing for a test of reliability 
of epigenetic age variables produced by the two assays. Estimates 
of DNA methylation age, EEAA, PEAA, GrimAge, DNAm PAI-1, 
and age-adjusted CD8+ Naïve cells were fairly reliable or consist-
ent between the two chips, r's > .60. Age acceleration residuals and 
IEAA, however, were only moderately reliable, r's = .40-.50, and age-
adjusted proportion of CD8pCD28nCD45RAn were not consistent 
between runs, r = −.01. To account for potential between-person dif-
ferences generated by assay, a covariate capturing assay batch was 
included in all linear regression models. (Within-person comparisons 
would not be affected by between-chip differences because sam-
ples from the same participant were always assayed on the same 
chip).

2.5 | Weight changes over pregnancy and the post-
partum period

Participant height in inches was assessed at study intake, and par-
ticipants self-reported their last known pre-pregnancy weight. At 
each assessment, weight in pounds was measured by study person-
nel using a balance beam scale. Body mass index (BMI; kg/m2) was 
calculated by converting height and weight to metric units, then di-
viding weight (kg) by height squared (m2) for reported pre-pregnancy 
weight and weight at each time point.

Pregnancy BMI change was calculated by subtracting first 
pregnancy assessment of BMI from last pregnancy assessment of 
BMI. Post-partum BMI change was calculated by subtracting first 
post-partum assessment of BMI from the last post-partum as-
sessment of BMI. Total BMI change was calculated by subtracting 
pre-pregnancy BMI from last post-partum assessment BMI.

2.6 | Covariates

Assay batch (54% [19] on Illumina 450K; 46% [16] on Illumina 
EPIC) was included in all models. Given the small sample size, only 
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covariates significantly associated with epigenetic age variables 
were included in analyses, specifically race/ethnicity (coded as 
White or not White), years of education, parity (coded as primipar-
ity or multiparity), marital status (married and/or cohabiting or not), 
gestational age at pregnancy blood sampling (weeks), breastfeeding 
(stopped breastfeeding before 1  year post-partum or still breast-
feeding at 1 year post-partum), and pre-pregnancy BMI. Note that 
gestational age at pregnancy blood sampling was only included in 
models examining pregnancy-to-post-partum change in epigenetic 
age indices.

Per capita household income was also considered as a covari-
ate, but was not significantly associated with epigenetic age indices. 
Given power considerations, it was not included as a covariate in 
analyses.

2.7 | Analytic strategy

All analyses were run using SPSS v. 24.29 Data were inspected for 
outliers and normality prior to analyses. Outliers were defined as 
values > ± 3 standard deviations from the respective means. First, 
trends in epigenetic age variables between pregnancy and the post-
partum period were inspected. Bivariate correlations were used to 
test associations between chronological age and DNA methylation 
age at the pregnancy and post-partum period assessments. Paired-
sample t-tests were used to determine whether there were signifi-
cant changes in the epigenetic age variables from mid-pregnancy to 
1 year post-partum.

Next, associations between BMI changes between pregnancy 
to 1 year post-birth and epigenetic age variables in pregnancy, and 
change over the follow-up, as appropriate, were assessed. Change 
in epigenetic age variables was calculated by subtracting pregnancy 
values from 1-year post-birth values. Bivariate correlations were 
inspected to identify significant associations and were followed by 

linear regression analyses controlling for assay batch and covariates 
as noted above. Linear regression models predicting change in epi-
genetic age variables also co-varied for baseline or mid-pregnancy 
epigenetic values.30,31 Given the small sample size (N  =  35), both 
significant (P < .05) and marginally significant (P < .10) effects were 
reported. Bivariate associations significant at P < .10 were followed 
by linear regression models.

3  | RESULTS

3.1 | Change in epigenetic age from pregnancy to 
the post-partum period* 

Mean epigenetic age indices at mid-pregnancy and 1 year after birth 
are reported in Table 2. At study entry, women were on average 
33.6 ± 5.29 years old chronologically, but 36.3 ± 5.52 years old with 
respect to DNA methylation age.

Strength of associations between chronological age and DNA 
methylation age was compared for pregnancy and post-birth as-
sessments (Figure 1). Consistent with studies of general adult 
populations, chronological age and DNA methylation were highly 
correlated (r's =  .758 and .770, at each time point). Strength of as-
sociations between the two periods was not statistically different, 
z = −0.120, P = .905, suggesting that the relation between chrono-
logical age and DNA methylation age remains constant from preg-
nancy to the post-partum.

Paired-sample t-tests were used to determine whether change 
in epigenetic age variables occurred between mid-pregnancy and 
1 year post-birth (Table 2). As expected, DNA methylation age in-
creased significantly between the two time points, t(34)  =  2.34, 
p = .0.025, M = 1.21 years, SD = 3.05 years. Considerable variation 
was present, however, with changes in DNA methylation age ranging 
from increases of 5.51 years to decreases of 3.07 years (Figure 2A). 

TA B L E  2  Epigenetic age variable descriptive statistics (n = 35)

Variable

Mid-pregnancy 1 y post-partum Difference (PP - Preg)

Mn ± SD Range Mn ± SD Range Mn ± SD Range P

Chronological age (y) 33.6 ± 5.29 23.0-45.0 35.1 ± 5.19 24.0-46.0 1.46 ± 0.505 1.0-2.00 <.001

DNA methylation age (y) 36.3 ± 5.52 30.0-42.6 37.5 ± 5.20 30.4-45.3 1.21 ± 3.05 −3.07-5.51 .025

Age acceleration residual 0.014 ± 3.51 −3.82-3.37 0.181 ± 3.12 −3.99-6.59 0.167 ± 3.04 −3.68-4.30 .747

EEAA (BioAge4HAStaticAdjAge) 1.06 ± 3.77 −2.79-7.33 −1.97 ± 4.28 −5.79-5.97 −3.03 ± 3.78 −7.76-8.00 <.001

IEAA (AAHOAdjCellCounts) 0.158 ± 3.35 −2.68-2.89 −0.043 ± 2.92 −4.09-3.16 −0.201 ± 3.01 −4.23-3.63 .695

Senescent CD8+ T cells 0.775 ± 2.35 −1.76-4.13 −1.70 ± 2.87 −4.99-2.74 −2.48 ± 2.54 −5.86-2.75 <.001

Naïve CD8+ T cells −5.69 ± 37.4 −45.2-49.9 23.8 ± 46.7 −35.2-89.8 29.5 ± 29.1 −23.7-62.8 <.001

PEAA 1.32 ± 5.96 −8.65-11.0 −3.18 ± 5.41 −10.1-8.09 −4.50 ± 4.98 −13.4-3.31 <.001

DNAm PAI-1 663 ± 1970 −2430-5777 −387 ± 2580 −5411-7501 −1049 ± 1584 −6086-1723 <.001

GrimAge 1.08 ± 3.38 −4.88-11.3 −1.56 ± 3.35 −9.34-7.06 −2.65 ± 1.50 −6.22-0.45 <.001

Abbreviatons: EEAA, extrinsic epigenetic age acceleration (ie, not adjusted for cell populations, combination of age intrinsic to cells and due to age-
related changes in cell populations); IEAA, intrinsic epigenetic age acceleration (ie, adjusted for cell populations, intrinsic to immune cells); PEAA, 
phenotypic epigenetic age acceleration.
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On average, there were no significant changes in rate of DNA age ac-
celeration from pregnancy to the post-partum period, t(34) = 0.326, 
P = .747, indicating that rate of epigenetic aging did not change over 
this period (Figure 2B).

Significant changes were observed for PEAA, GrimAge, and 
DNAm PAI-1. In contrast to studies of non-pregnant adults, sig-
nificant decreases in PEAA, t(34)  = −5.34, P  <  .001, M = −4.50, 
SD = 4.98 (Figure 2C), GrimAge, t(34) = −10.5, P < .001, M = −2.65, 
SD = 1.50 (Figure 2D), and DNAm PAI-1, t(34) = −3.92, P <  .001, 
M  =  −1050, SD  =  1584 (Figure 2E), were observed between 
mid-pregnancy and 1 year post-birth. This suggests that women 
become on average younger with respect to PEAA, GrimAge, and 
DNAm PAI-1 between pregnancy and the post-partum period.

Immune-specific epigenetic age indices also evidenced sig-
nificant changes over time. Specifically, there were significant 
decreases in EEAA observed from mid-pregnancy to 1  year 
post-partum, t(34)  =  −4.73, P  <  .001, M  =  −3.03, SD  =  3.78 
(Figure 2F), but IEAA did not significantly change over the fol-
low-up, t( 34) = −0.396, P =  .695 (Figure 2G). IEAA captures epi-
genetic aging that is independent of age-related shifts in immune 
cell populations, whereas EEAA is an indicator of immune epigene-
tic age enriched for age-related shifted in immune cell populations. 
Given that decreases in only EEAA were observed, this suggests 
that women become younger with respect to age-related shifts in 
immune cell populations specifically. Consistent with this pattern, 
changes were also detected in age-adjusted proportions of immune 
cells. Again, contrary to what is expected based on observations 
in non-pregnant adults, proportion of senescent CD8+ T cells sig-
nificantly decreased from pregnancy to the post-partum period, 
t(34) = −5.78, P < .001, M = −2.48, SD = 2.54 (Figure 2H), and naïve 
CD8+ T cells increased, t(34) = 5.99, P < .001, M = 29.5, SD = 29.1 
(Figure 2I).

3.2 | Body mass index (BMI) change and post-
partum epigenetic variables† 

Participants on average gained 3.02  ±  1.15  kg/m2 during preg-
nancy, lost 1.26 ± 2.50 kg/m2 during the year after birth, and gained 
0.433  ±  2.64  kg/m2 from before pregnancy to 1  year after birth. 
In bivariate correlations, increases in BMI during pregnancy were 
associated with lower post-birth DNA methylation age, r  =  −.329, 
P = .053, lower GrimAge, r = −.389, P = .021, and lower DNAm PAI-
1, r = −.351, P =  .039.‡  After covariates were added to models, in-
creases in BMI during late pregnancy only predicted lower post-birth 
GrimAge, b = −1.35, SE = 0.507, P = .013 (Table 3).

Having no decrease in BMI during the year post-birth (reflect-
ing weight retention) was associated with higher post-birth DNA 
methylation age, r  =  .395, P  =  .021, higher age acceleration resid-
ual, r = .362, P = .035, higher IEAA, r = .401, P = .019, higher PEAA, 
r = .489, P = .003, higher GrimAge, r = .639, P < .001, higher DNAm 
PAI-1, r =  .409, P =  .016, smaller decreases in GrimAge from preg-
nancy to 1 year after birth, r = .446, P = .008, and smaller decreases 
in DNAm PAI-1, r = .491, P = .003. Each of these associations per-
sisted after adjusting for covariates, p's < .028 (Table 3; Figure 3).

Next, change in BMI during pregnancy and during the first year 
post-birth were both entered into linear regression models with co-
variates. Having no decrease in BMI by 1 year post-birth continued 
to predict higher 1-year age acceleration residuals, IEAA, PEAA, 
GrimAge, change in GrimAge, and change in DNAm PAI-1, p's < .041. 
In contrast, BMI change during pregnancy was not independently 
associated with any epigenetic age indices, p's > .217.

Finally, bivariate correlations between total BMI change from 
before pregnancy to the post-birth and epigenetic age indices were 
computed. Greater total increases in BMI from preconception to 
1  year post-birth were associated with higher post-birth PEAA, 
r =  .331, P =  .052, GrimAge, r =  .430, P =  .010, and higher DNAm 
PAI-1, r = .351, P = .038; smaller decreases in PEAA, r = .440, P = .08, 
smaller decreases in GrimAge, r  =  .451, P  =  .007, and smaller de-
creases in DNAm PAI-1, r  =  .496, P  =  .002, from pregnancy to 
1  year post-birth; and large increases in IEAA from pregnancy to 
1 year post-birth, r = .316, P = .064. After adjusting for covariates, 
greater total increases in BMI from preconception to 1 year post-
birth continued to be associated with increases in IEAA, b = 0.504, 
SE  =  0.216, P  =  .028, and smaller decreases in PEAA, b  =  0.700, 
SE = 0.326, P = .042, GrimAge, b = .0.439, SE = 0.098, P < .001, and 
DNAm PAI-1, b = 336, SE = 130, P = .017 (Table 3).

4  | DISCUSSION

The purpose of this study was to evaluate changes in immune cell epi-
genetic age indices between pregnancy and the post-partum period 
and explore associations with important pregnancy-related factors, 
namely weight change from mid-pregnancy to 1 year post-partum. 
The results suggest that some epigenetic age variables changed in 

F I G U R E  1  Scatterplot showing the association between 
chronological age and DNA methylation age during pregnancy 
and at 1 y post-partum. At the mid-pregnancy assessment, DNA 
methylation age and chronological age are correlated, r = .758, and 
at the 1 y post-partum assessment, r = .770



     |  7 of 11ROSS et al.

counterintuitive ways between mid-pregnancy and 1 year post-par-
tum, with women appearing to become biologically younger with re-
spect to PEAA, GrimAge, DNAm PAI-1, and immune cell population 
epigenetic age indices (EEAA, age-adjusted proportion of senescent 
CD8+ T cells and naïve CD8+ T cells). There is also evidence that epi-
genetic age between mid-pregnancy and 1 year post-partum could 
be affected by weight change during pregnancy and the post-partum 
period. In particular, weight retention over the post-partum period 
was predictive of epigenetic age acceleration from pregnancy to the 
post-partum. Collectively, these preliminary findings shed light on 
how epigenetic aging processes operate during pregnancy and the 
post-partum period.

To the best of our knowledge, this is the first study to assess 
changes in immune cell proportions during pregnancy and the 
post-partum period, and results suggest that pregnancy physiol-
ogy could influence proportion of immune cells, with implications 

for understanding immune activity during pregnancy. In non-preg-
nant adults, EEAA and age-adjusted proportions of senescent CD8+ 
T cells increase over time, and age-adjusted proportion of naïve 
CD8+ T cells decrease over time.8,17,32 We observed the opposite 
from pregnancy to the post-partum period. EEAA and age-adjusted 
proportion of senescent CD8+ T cells decreased, and age-adjusted 
proportion of naïve CD8+ T cells increased from pregnancy to the 
post-partum period. This pattern suggests a regeneration of T cells 
from pregnancy to the post-partum period, potentially indicating 
that, following major changes in the maternal immune system during 
normal pregnancy and recovery from labor and delivery,33-35 there 
is a partial post-partum rejuvenation. In addition, PEAA, GrimAge, 
and DNAm PAI-1, which are all enriched for DNA methylation sites 
associated with clinical indicators of morbidity and mortality risk, 
and which also increase with biological age in non-pregnant adults, 
decreased between pregnancy and the post-partum period. This 

F I G U R E  2  Spaghetti plots of change between mid-pregnancy and 1 y post-partum for (A) DNA methylation age, (B) age acceleration 
residual, (C) phenotypic epigenetic age acceleration (PEAA), (D) GrimAge, (E) DNAm PAI-1, (F) extrinsic epigenetic age acceleration (EEAA), 
(G) intrinsic epigenetic age acceleration (IEAA), (H) senescent CD8+ T cells, and (I) naïve CD8+ T cells. DNA methylation age and naïve 
CD8+ T cells significantly increased (p's < .025), PEAA, GrimAge, DNAm PAI-1, EEAA, and senescent CD8+ T cells significantly decreased 
(p's < .001), and age acceleration residual and IEAA did not significantly change (p's > .695) between mid-pregnancy and 1 y post-partum
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suggests  that overall pregnancy may slow some aspects of aging. 
It is possible that this is driven by the unique neuroendocrine ac-
tivity that characterizes pregnancy and the post-partum period, 
particularly for growth and thyroid hormones,24 although additional 
research is needed to explore this possibility. Collectively, then, our 
findings suggest that in some ways, women's immune indicators of 
biological age become younger between mid-pregnancy and 1 year 
post-partum, consistent with a protective health effect of parity36-40 
and slower biological aging in women compared to men.8-11

Post-partum weight change emerged as a strong predictor of 
epigenetic age indices. In non-pregnant adult samples, obesity and 
higher body weight are associated with accelerated epigenetic 
age.23 In the current sample, weight gain during pregnancy was 
not consistently associated with post-partum epigenetic age indi-
ces. It is possible that processes linking weight gain and biological 
aging are interrupted during pregnancy in an adaptive manner, or 
that no association was found because weight gain during preg-
nancy can be driven by other factors, for example, fluid retention, 

and placenta and fetal growth. This finding along with the oth-
ers requires replication. In contrast, weight retention during the 
post-partum period was associated with accelerations in DNA 
methylation age and higher PEAA at 12 months post-partum, and 
this was independent of weight change during pregnancy. These 
findings are important in the context of prior work suggesting that 
post-partum weight gain and weight retention increases risk for 
later health issues.41-44

There are several limitations to consider, and foremost is that 
this was a pilot study with a relatively small sample size. It is not 
possible to determine whether null results indicate a lack of as-
sociation or a lack of power to detect associations. Nevertheless, 
meaningful and potentially important patterns were detected, 
supporting the usefulness of pursuing these questions in future 
research. Second, although a clear strength of the study is use 
of data collected in a prospective design, the time period from 
mid-pregnancy to 1  year post-partum does not capture the full 
length of pregnancy, which would be of interest to do. Future 

Predictor Outcome B SE β P

Preg BMI change PP DNA methylation 
age

1.23- 0.952 −.271 .207

  PP GrimAge −1.35 0.507 −.464 .013

  PP DNAm PAI-1 −680 376 −.302 .082

PP BMI change PP DNA methylation 
age

1.02 0.435 .484 .028

  PP Age accel resid 0.730 0.253 .577 .008

  PP IEAA 0.795 0.229 .671 .002

  PP PEAA 1.30 0.393 .592 .003

  PP GrimAge 0.874 0.217 .645 <.001

  PP DNAm PAI-1 497 179 .476 .010

  Change GrimAgea  0.450 0.118 .744 .001

  Change DNAm PAI-1a  323 140 .519 .030

Total BMI change PP PEAA 0.728 0.426 .356 .099

  PP GrimAge 0.472 0.253 .373 .074

  PP DNAm PAI-1 277 189 .284 .154

  Change in IEAAa  0.504 0.216 .443 .028

  Change in PEAAa  0.700 0.326 .372 .042

  Change in GrimAgea  0.439 0.098 .212 <.001

  Change in DNAm 
PAI-1a 

336 130 .561 .017

Abbreviations: Age accel resid, age acceleration residual; BMI, body mass index; EEAA, extrinsic 
epigenetic age acceleration; IEAA, intrinsic epigenetic age acceleration; PEAA, phenotypic 
epigenetic age acceleration; PP, post-partum; Preg, pregnancy.
aindicates models for which baseline (pregnancy) epigenetic age indices and gestational age at 
pregnancy assessment were additionally included as covariates. 

TA B L E  3  Linear regression models 
predicting epigenetic age variables from 
pregnancy-related variables

F I G U R E  3  Associations between post-birth change in BMI with (A) post-partum DNA methylation age, (B) post-partum age-adjusted 
acceleration residuals, (C) post-partum IEAA (intrinsic epigenetic age acceleration), (D) post-partum PEAA (phenotypic epigenetic age 
acceleration), (E) post-partum GrimAge, (F), post-partum DNAm PAI-1, (G) change in GrimAge from mid-pregnancy to 1 y post-partum, and 
(H) change in DNAm PAI-1 from mid-pregnancy to 1 y post-partum, adjusting for covariates. Baseline or mid-pregnancy values were also 
included as covariates for models of change
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work should consider tracking epigenetic aging from preconcep-
tion through pregnancy and possibly longer into the post-birth pe-
riod and to test additional factors that are associated with rates 
of aging. Third, there was a change in DNA methylation chips 
mid-way through our pilot project (450K vs EPIC), and indica-
tions of systematic between-person differences in epigenetic age 
variables were detected by chip. Within-person differences how-
ever were not due to chip differences because samples drawn for 
each participant from the two different time points were always 
included on the same chip. Thus, observed change in epigenetic 
age could not be due to batch. Likewise, batch was adjusted for 
in our models. Optimally, future research should replicate these 
findings using a single chip to reduce batch effects. Fourth, it is 
possible that adverse pregnancy outcomes, such as preterm birth, 
or obstetric risk factors, such as hypertension, diabetes, serious 
infections, or anemia, could affect epigenetic age indices in im-
mune cells during pregnancy. Due to the small sample size and 
low frequency of specific pregnancy complications, we were not 
able to test associations between pregnancy complications and 
change in epigenetic age indices between pregnancy and a year 
post-partum. Future work should consider how epigenetic aging 
during pregnancy and the post-partum is affected by pregnancy 
complications and adverse outcomes.

5  | CONCLUSIONS

From pregnancy to post-partum, women's epigenetic age, as in-
dexed by the EEAA, PEAA, GrimAge, and DNAm PAI-1, decreased 
from pregnancy to the post-partum, indicating deceleration of bio-
logical aging. This is the reverse of what has been observed in non-
pregnant adults. Importantly, not all women exhibited deceleration. 
When examining predictors of rates of epigenetic aging, post-par-
tum weight gain was associated with increases in epigenetic aging. 
These findings shed light on the unique biological states that consti-
tute pregnancy and the post-partum period and highlight a possible 
mechanism through which pregnancy and post-partum associated 
factors could affect maternal health over the long-term.
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ENDNOTE S
	*	 Pregnancy and post-partum epigenetic age indices were adjusted for 

gestational age at pregnancy at time of blood sampling using repeated 
measure ANCOVAs. Magnitude of change over the follow-up was not 
affected by gestational age at sampling, and the same pattern of re-
sults emerged. 

	†	 Pattern of results was similar and consistent when timing of weight 
measurement (pregnancy gestational age or weeks post-partum) and 
timing between weight measurements were included in models as 
covariates. 

	‡	 Given that there is no theoretical reason to assume that mid-preg-
nancy epigenetic age values would drive changes in weight over the 
follow-up, pregnancy epigenetic age variables were not considered. 
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